Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves.

Identifieur interne : 003518 ( Main/Exploration ); précédent : 003517; suivant : 003519

Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves.

Auteurs : Bahtijor Rasulov [Estonie] ; Lucian Copolovici ; Agu Laisk ; Ulo Niinemets

Source :

RBID : pubmed:19129417

Descripteurs français

English descriptors

Abstract

The control of foliar isoprene emission is shared between the activity of isoprene synthase, the terminal enzyme catalyzing isoprene formation from dimethylallyldiphosphate (DMADP), and the pool size of DMADP. Due to limited in vivo information of isoprene synthase kinetic characteristics and DMADP pool sizes, the relative importance of these controls is under debate. In this study, the phenomenon of postillumination isoprene release was employed to develop an in vivo method for estimation of the DMADP pool size and to determine isoprene synthase kinetic characteristics in hybrid aspen (Populus tremula x Populus tremuloides) leaves. The method is based on observations that after switching off the light, isoprene emission continues for 250 to 300 s and that the integral of the postillumination isoprene emission is strongly correlated with the isoprene emission rate before leaf darkening, thus quantitatively estimating the DMADP pool size associated with leaf isoprene emission. In vitro estimates demonstrated that overall leaf DMADP pool was very large, almost an order of magnitude larger than the in vivo pool. Yet, the difference between total DMADP pools in light and in darkness (light-dependent DMADP pool) was tightly correlated with the in vivo estimates of the DMADP pool size that is responsible for isoprene emission. Variation in in vivo DMADP pool size was obtained by varying light intensity and atmospheric CO(2) and O(2) concentrations. From these experiments, the in vivo kinetic constants of isoprene synthase were determined. In vivo isoprene synthase kinetic characteristics suggested that isoprene synthase mainly operates under substrate limitation and that short-term light, CO(2), and O(2) dependencies of isoprene emission result from variation in DMADP pool size rather than from modifications in isoprene synthase activity.

DOI: 10.1104/pp.108.133512
PubMed: 19129417
PubMed Central: PMC2649399


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Department of Plant Physiology, University of Tartu, 51010 Tartu</wicri:regionArea>
<wicri:noRegion>51010 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Copolovici, Lucian" sort="Copolovici, Lucian" uniqKey="Copolovici L" first="Lucian" last="Copolovici">Lucian Copolovici</name>
</author>
<author>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19129417</idno>
<idno type="pmid">19129417</idno>
<idno type="doi">10.1104/pp.108.133512</idno>
<idno type="pmc">PMC2649399</idno>
<idno type="wicri:Area/Main/Corpus">003695</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003695</idno>
<idno type="wicri:Area/Main/Curation">003695</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003695</idno>
<idno type="wicri:Area/Main/Exploration">003695</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Department of Plant Physiology, University of Tartu, 51010 Tartu</wicri:regionArea>
<wicri:noRegion>51010 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Copolovici, Lucian" sort="Copolovici, Lucian" uniqKey="Copolovici L" first="Lucian" last="Copolovici">Lucian Copolovici</name>
</author>
<author>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Butadienes (analysis)</term>
<term>Darkness (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Hemiterpenes (analysis)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Light (MeSH)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Pentanes (analysis)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Populus (enzymology)</term>
<term>Populus (radiation effects)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Butadiènes (analyse)</term>
<term>Cinétique (MeSH)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Environnement (MeSH)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Hémiterpènes (analyse)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Obscurité (MeSH)</term>
<term>Pentanes (analyse)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (enzymologie)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Butadienes</term>
<term>Hemiterpenes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Butadiènes</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alkyl et aryl transferases</term>
<term>Composés organiques du phosphore</term>
<term>Hémiterpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Darkness</term>
<term>Environment</term>
<term>Kinetics</term>
<term>Light</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Environnement</term>
<term>Lumière</term>
<term>Obscurité</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The control of foliar isoprene emission is shared between the activity of isoprene synthase, the terminal enzyme catalyzing isoprene formation from dimethylallyldiphosphate (DMADP), and the pool size of DMADP. Due to limited in vivo information of isoprene synthase kinetic characteristics and DMADP pool sizes, the relative importance of these controls is under debate. In this study, the phenomenon of postillumination isoprene release was employed to develop an in vivo method for estimation of the DMADP pool size and to determine isoprene synthase kinetic characteristics in hybrid aspen (Populus tremula x Populus tremuloides) leaves. The method is based on observations that after switching off the light, isoprene emission continues for 250 to 300 s and that the integral of the postillumination isoprene emission is strongly correlated with the isoprene emission rate before leaf darkening, thus quantitatively estimating the DMADP pool size associated with leaf isoprene emission. In vitro estimates demonstrated that overall leaf DMADP pool was very large, almost an order of magnitude larger than the in vivo pool. Yet, the difference between total DMADP pools in light and in darkness (light-dependent DMADP pool) was tightly correlated with the in vivo estimates of the DMADP pool size that is responsible for isoprene emission. Variation in in vivo DMADP pool size was obtained by varying light intensity and atmospheric CO(2) and O(2) concentrations. From these experiments, the in vivo kinetic constants of isoprene synthase were determined. In vivo isoprene synthase kinetic characteristics suggested that isoprene synthase mainly operates under substrate limitation and that short-term light, CO(2), and O(2) dependencies of isoprene emission result from variation in DMADP pool size rather than from modifications in isoprene synthase activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19129417</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>149</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves.</ArticleTitle>
<Pagination>
<MedlinePgn>1609-18</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.133512</ELocationID>
<Abstract>
<AbstractText>The control of foliar isoprene emission is shared between the activity of isoprene synthase, the terminal enzyme catalyzing isoprene formation from dimethylallyldiphosphate (DMADP), and the pool size of DMADP. Due to limited in vivo information of isoprene synthase kinetic characteristics and DMADP pool sizes, the relative importance of these controls is under debate. In this study, the phenomenon of postillumination isoprene release was employed to develop an in vivo method for estimation of the DMADP pool size and to determine isoprene synthase kinetic characteristics in hybrid aspen (Populus tremula x Populus tremuloides) leaves. The method is based on observations that after switching off the light, isoprene emission continues for 250 to 300 s and that the integral of the postillumination isoprene emission is strongly correlated with the isoprene emission rate before leaf darkening, thus quantitatively estimating the DMADP pool size associated with leaf isoprene emission. In vitro estimates demonstrated that overall leaf DMADP pool was very large, almost an order of magnitude larger than the in vivo pool. Yet, the difference between total DMADP pools in light and in darkness (light-dependent DMADP pool) was tightly correlated with the in vivo estimates of the DMADP pool size that is responsible for isoprene emission. Variation in in vivo DMADP pool size was obtained by varying light intensity and atmospheric CO(2) and O(2) concentrations. From these experiments, the in vivo kinetic constants of isoprene synthase were determined. In vivo isoprene synthase kinetic characteristics suggested that isoprene synthase mainly operates under substrate limitation and that short-term light, CO(2), and O(2) dependencies of isoprene emission result from variation in DMADP pool size rather than from modifications in isoprene synthase activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Copolovici</LastName>
<ForeName>Lucian</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laisk</LastName>
<ForeName>Agu</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ulo</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>01</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.-</RegistryNumber>
<NameOfSubstance UI="C093854">isoprene synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003624" MajorTopicYN="N">Darkness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
<ArticleId IdType="pii">pp.108.133512</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.133512</ArticleId>
<ArticleId IdType="pmc">PMC2649399</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2000 Nov;5(11):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11077256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):78-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):2001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2001 May 15;292(2):272-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11355861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):1276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1413-1420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Feb;101(2):435-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):894-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1079-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 16;421(6920):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26666-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1939-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):700-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Dec;61(10):1390-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Nov;76(3):723-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Dec;82(4):1063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Sep;29(9):1820-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):662-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans A Math Phys Eng Sci. 2007 Jul 15;365(1856):1677-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Feb;31(2):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jan;10(1):8-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(3-4):260-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jun 2;270(22):13010-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7768893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Mar;116(3):1111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Apr 15;331 ( Pt 2):615-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9531505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Copolovici, Lucian" sort="Copolovici, Lucian" uniqKey="Copolovici L" first="Lucian" last="Copolovici">Lucian Copolovici</name>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003518 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003518 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19129417
   |texte=   Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19129417" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020